Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 852
Filtrar
1.
Dose Response ; 22(2): 15593258241247980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645382

RESUMO

Isoproterenol (ISO), a chemically synthesized catecholamine, belongs to ß-adrenoceptor agonist used to treat bradycardia. The ß-adrenergic agonist is an essential regulator of myocardial metabolism and contractility; however, excessive exposure to ISO can initiate oxidative stress and inflammation. This study aims to investigate the molecular mechanisms underlying ISO-induced cardiac remodeling, the protective efficacy of resveratrol (RSVR), and its liposomal formulation (L-RSVR) against such cardiac change. Wistar albino rats were evenly divided into 4 groups. Control group, ISO group received ISO (50 mg/kg, s.c.) twice a week for 2 weeks, and RSVR- and L-RSVR-treated groups in which rats received either RSVR or L-RSVR (20 mg/kg/day, p.o.) along with ISO for 2 weeks. ISO caused a significant elevation of the expression levels of BAX and MEF2 mRNA, S100A1 and cytochrome C proteins, as well as DNA fragmentation in cardiac tissue compared to the control group. Treatment with either RSVR or L-RSVR for 14 days significantly ameliorated the damage induced by ISO, as evidenced by the improvement of all measured parameters. The present study shows that L-RSVR provides better cardio-protection against ISO-induced cardiac injury in rats, most likely through modulation of cardiac S100A1 protein expression and inhibition of inflammation and apoptosis.

2.
Biomed Pharmacother ; 174: 116534, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565062

RESUMO

The isoproterenol (ISO)-induced myocardial fibrosis is considered a reliable and repeatable experimental model characterized by a relatively low mortality rate. Although is well-known that ISO stimulates the ß1 adrenergic receptors at the myocardial level, a high degree of heterogeneity emerges around the doses and duration of the treatment generating unclear results. Therefore, we propose to gain insights into the progression of ISO-induced myocardial fibrosis, in order to critically analyze and optimize the experimental model. Male Wistar rats (12-14-week-old) were submitted to subcutaneous injection of ISO, in particular, two doses were selected: the commonly used dose of 5 mg/kg and a lower dose of 1 mg/kg, administered for 3 and 6 days. Biochemical and histological examinations were conducted either immediately after the last administration or after a recovering period of 7 or 14 days from the initial administration. Noteworthy, from our investigation emerged that even the lower dose of ISO was able to induce the maximal biochemical and histological alterations, suggesting that lower doses should be considered to control the progression of the damage more precisely and to identify a prodromic phase in which intervention with pharmacological or nutraceutical tools can be effectively attempted.

3.
J Asian Nat Prod Res ; : 1-12, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634612

RESUMO

We established myocardial injury models in vivo and in vitro to investigate the cardioprotective effect of gomisin D obtained from Schisandra chinensis. Gomisin D significantly inhibited isoproterenol-induced apoptosis and hypertrophy in H9C2 cells. Gomisin D decreased serum BNP, ANP, CK-MB, cTn-T levels and histopathological alterations, and inhibited myocardial hypertrophy in mice. In mechanisms research, gomisin D reversed ISO-induced accumulation of intracellular ROS and Ca2+. Gomisin D further improved mitochondrial energy metabolism disorders by regulating the TCA cycle. These results demonstrated that gomisin D had a significant effect on isoproterenol-induced myocardial injury by inhibiting oxidative stress, calcium overload and improving mitochondrial energy metabolism.

4.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38456539

RESUMO

Cardiac hypertrophy is one of the key processes in the development of heart failure. Notably, small GTPases and GTPase­activating proteins (GAPs) serve essential roles in cardiac hypertrophy. RhoGAP interacting with CIP4 homologs protein 1 (RICH1) is a RhoGAP that can regulate Cdc42/Rac1 and F­actin dynamics. RICH1 is involved in cell proliferation and adhesion; however, to the best of our knowledge, its role in cardiac hypertrophy remains unknown. In the present study, the role of RICH1 in cardiomyocyte hypertrophy was assessed. Cell viability was analyzed using the Cell Counting Kit­8 assay and cells surface area (CSA) was determined by cell fluorescence staining. Reverse transcription­quantitative PCR and western blotting were used to assess the mRNA expression levels of hypertrophic marker genes, such as Nppa, Nppb and Myh7, and the protein expression levels of RICH1, respectively. RICH1 was shown to be downregulated in isoproterenol (ISO)­ or angiotensin II (Ang II)­treated H9c2 cells. Notably, overexpression of RICH1 attenuated the upregulation of hypertrophy­related markers, such as Nppa, Nppb and Myh7, and the enlargement of CSA induced by ISO and Ang II. By contrast, the knockdown of RICH1 exacerbated these effects. These findings suggested that RICH1 may be a novel suppressor of ISO­ or Ang II­induced cardiomyocyte hypertrophy. The results of the present study will be beneficial to further studies assessing the role of RICH1 and its downstream molecules in inhibiting cardiac hypertrophy.


Assuntos
Cardiopatias Congênitas , Miócitos Cardíacos , Nitrobenzoatos , Procainamida/análogos & derivados , Humanos , Miócitos Cardíacos/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiopatias Congênitas/metabolismo
5.
Physiol Rep ; 12(5): e15966, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444056

RESUMO

Previous studies revealed a controversial role of mechanistic target of rapamycin complex 1 (mTORC1) and mTORC1-regulated macroautophagy in isoproterenol (ISO)-induced cardiac injury. Here we investigated the role of mTORC1 and potential underlying mechanisms in ISO-induced cardiomyocyte necrosis. Two consecutive daily injections of ISO (85 mg/kg, s.c.) or vehicle control (CTL) were administered to C57BL/6J mice with or without rapamycin (RAP, 5 mg/kg, i.p.) pretreatment. Western blot analyses showed that myocardial mTORC1 signaling and the RIPK1-RIPK3-MLKL necroptotic pathway were activated, mRNA expression analyses revealed downregulation of representative TFEB target genes, and Evan's blue dye uptake assays detected increased cardiomyocyte necrosis in ISO-treated mice. However, RAP pretreatment prevented or significantly attenuated the ISO-induced cardiomyocyte necrosis, myocardial inflammation, downregulation of TFEB target genes, and activation of the RIPK1-RIPK3-MLKL pathway. LC3-II flux assays confirmed the impairment of myocardial autophagic flux in the ISO-treated mice. In cultured neonatal rat cardiomyocytes, mTORC1 signaling was also activated by ISO, and inhibition of mTORC1 by RAP attenuated ISO-induced cytotoxicity. These findings suggest that mTORC1 hyperactivation and resultant suppression of macroautophagy play a major role in the induction of cardiomyocyte necroptosis by catecholamine surges, identifying mTORC1 inhibition as a potential strategy to treat heart diseases with catecholamine surges.


Assuntos
Catecolaminas , Miócitos Cardíacos , Animais , Camundongos , Ratos , Camundongos Endogâmicos C57BL , Macroautofagia , Necroptose , Isoproterenol/toxicidade , Alvo Mecanístico do Complexo 1 de Rapamicina , Necrose
6.
J Biochem Mol Toxicol ; 38(3): e23668, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439645

RESUMO

Cardiovascular diseases cause a large number of deaths throughout the world. No research was conducted earlier on p-coumaric acid's effect on tachycardia, inflammation, ion pump dysfunction, and electrolyte imbalance. Hence, we appraised the above-said parameters in isoproterenol-induced myocardial infarcted rats. This investigation included 24 male albino Wistar rats in 4 groups. Normal control Group 1, p-coumaric acid (8 mg/kg body weight) alone treated Group 2, Isoproterenol (100 mg/kg body weight) induced myocardial infarcted Group 3, p-coumaric acid (8 mg/kg body weight) pretreated isoproterenol (100 mg/kg body weight) induced Group 4. After 1 day of the last dose of isoproterenol injection (day 10), rats were killed and blood and heart were taken and inflammatory markers, lipid peroxidation, nonenzymatic antioxidants, ion pumps, and electrolytes were measured. The heart rate, serum cardiac troponin-T, serum/plasma inflammatory markers, and heart proinflammatory cytokines were raised in isoproterenol-induced rats. Isoproterenol also enhanced plasma lipid peroxidation, lessened plasma nonenzymatic antioxidants, and altered heart ion pumps and serum and heart electrolytes. In this study, p-coumaric acid pretreatment orally for 7 days to isoproterenol-induced myocardial infarcted rats prevented changes in the above-cited parameters. p-Coumaric acid's anti-tachycardial, anti-inflammatory, anti-ion pump dysfunction and anti-electrolyte imbalance properties are the mechanisms for these cardioprotective effects.


Assuntos
Ácidos Cumáricos , Infarto do Miocárdio , Taquicardia , Masculino , Animais , Ratos , Isoproterenol/toxicidade , Taquicardia/induzido quimicamente , Taquicardia/tratamento farmacológico , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Antioxidantes/farmacologia , Bombas de Íon , Ratos Wistar , Peso Corporal
7.
Biomed Pharmacother ; 172: 116241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330711

RESUMO

OBJECTIVE: Pathologic cardiac hypertrophy (PCH) is a precursor to heart failure. Amydrium sinense (Engl.) H. Li (AS), a traditional Chinese medicinal plant, has been extensively utilized to treat chronic inflammatory diseases. However, the therapeutic effect of ASWE on PCH and its underlying mechanisms are still not fully understood. METHODS: A cardiac hypertrophy model was established by treating C57BL/6 J mice and neonatal rat cardiomyocytes (NRCMs) in vitro with isoprenaline (ISO) in this study. The antihypertrophic effects of AS water extract (ASWE) on cardiac function, histopathologic manifestations, cell surface area and expression levels of hypertrophic biomarkers were examined. Subsequently, the impact of ASWE on inflammatory factors, p65 nuclear translocation and NF-κB activation was investigated to elucidate the underlying mechanisms. RESULTS: In the present study, we observed that oral administration of ASWE effectively improved ISO-induced cardiac hypertrophy in mice, as evidenced by histopathological manifestations and the expression levels of hypertrophic markers. Furthermore, the in vitro experiments demonstrated that ASWE treatment inhibited cardiac hypertrophy and suppressed inflammation response in ISO-treated NRCMs. Mechanically, our findings provided evidence that ASWE suppressed inflammation response by repressing p65 nuclear translocation and NF-κB activation. ASWE was found to possess the capability of inhibiting inflammation response and cardiac hypertrophy induced by ISO. CONCLUSION: To sum up, ASWE treatment was shown to attenuate ISO-induced cardiac hypertrophy by inhibiting cardiac inflammation via preventing the activation of the NF-kB signaling pathway. These findings provided scientific evidence for the development of ASWE as a novel therapeutic drug for PCH treatment.


Assuntos
Araceae , NF-kappa B , Animais , Camundongos , Ratos , Camundongos Endogâmicos C57BL , Isoproterenol/toxicidade , Transdução de Sinais , Íons , Lítio , Artesunato , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
8.
Int J Pharm ; 653: 123872, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38336178

RESUMO

Cardiotoxicity (CT) is a severe condition that negatively impacts heart function. ß-sitosterol (BS) is a group of phytosterols and known for various pharmacological benefits, such as managing diabetes, cardiac protection, and neuroprotection. This study aims to develop niosomes (NS) containing BS, utilizing cholesterol as the lipid and Tween 80 as the stabilizer. The research focuses on designing and evaluating both conventional BS-NS and hyaluronic acid (HA) modified NS (BS-HA-NS) to enhance the specificity and efficacy of BS within cardiac tissue. The resulting niosomal formulation was spherical, with a size of about 158.51 ± 0.57 nm, an entrapment efficiency of 93.56 ± 1.48 %, and a drug loading of 8.07 ± 1.62 %. To evaluate cytotoxicity on H9c2 heart cells, the MTT assay was used. The cellular uptake of BS-NS and BS-HA-NS was confirmed by confocal microscopy on H9c2 cardiac cells. Administering BS-NS and BS-HA-NS intravenously at a dose of 10 mg/kg showed the ability to significantly decrease the levels of cardiac troponin-I (cTn-I), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and lipid peroxidation (MDA). Tissue histopathology indicated a substantial potential for repairing cardiac tissue after treatment with BS-NS and BS-HA-NS and strong cardioprotection against ISO induced myocardial tissue damages. Thus, enhancing BS's therapeutic effectiveness through niosome surface modification holds promise for mitigating cardiac damage resulting from CT.


Assuntos
Cardiotoxicidade , Infarto do Miocárdio , Sitosteroides , Ratos , Animais , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Lipossomos/farmacologia , Cardiotônicos/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Antioxidantes/farmacologia , Estresse Oxidativo
9.
Physiol Genomics ; 56(4): 360-366, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314697

RESUMO

Adverse cardiac remodeling contributes to heart failure development and progression, partly due to inappropriate sympathetic nervous system activation. Although ß-adrenergic receptor (ß-AR) blockade is a common heart failure therapy, not all patients respond, prompting exploration of alternative treatments. Minocycline, an FDA-approved antibiotic, has pleiotropic properties beyond antimicrobial action. Recent evidence suggests it may alter gene expression via changes in miRNA expression. Thus, we hypothesized that minocycline could prevent adverse cardiac remodeling induced by the ß-AR agonist isoproterenol, involving miRNA-mRNA transcriptome alterations. Male C57BL/6J mice received isoproterenol (30 mg/kg/day sc) or vehicle via osmotic minipump for 21 days, along with daily minocycline (50 mg/kg ip) or sterile saline. Isoproterenol induced cardiac hypertrophy without altering cardiac function, which minocycline prevented. Total mRNA sequencing revealed isoproterenol altering gene networks associated with inflammation and metabolism, with fibrosis activation predicted by integrated miRNA-mRNA sequencing, involving miR-21, miR-30a, miR-34a, miR-92a, and miR-150, among others. Conversely, the cardiac miRNA-mRNA transcriptome predicted fibrosis inhibition in minocycline-treated mice, involving antifibrotic shifts in Atf3 and Itgb6 gene expression associated with miR-194 upregulation. Picrosirius red staining confirmed isoproterenol-induced cardiac fibrosis, prevented by minocycline. These results demonstrate minocycline's therapeutic potential in attenuating adverse cardiac remodeling through miRNA-mRNA-dependent mechanisms, especially in reducing cardiac fibrosis. NEW & NOTEWORTHY We demonstrate that minocycline treatment prevents cardiac hypertrophy and fibrotic remodeling induced by chronic ß-adrenergic stimulation by inducing antifibrotic shifts in the cardiac miRNA-mRNA transcriptome.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , MicroRNAs , Humanos , Masculino , Camundongos , Animais , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Minociclina/farmacologia , Miócitos Cardíacos/metabolismo , Adrenérgicos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Remodelação Ventricular/genética , Camundongos Endogâmicos C57BL , Cardiomegalia/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Fibrose
10.
Toxicol Appl Pharmacol ; 484: 116840, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307258

RESUMO

Isoprenaline hydrochloride (IH) is a ß-adrenergic receptor agonist commonly used in the treatment of hypotension, shock, asthma, and other diseases. However, IH-induced cardiotoxicity limits its application. A large number of studies have shown that long noncoding RNA (lncRNA) regulates the occurrence and development of cardiovascular diseases. This study aimed to investigate whether abnormal lncRNA expression is involved in IH-mediated cardiotoxicity. First, the Sprague-Dawley (SD) rat myocardial injury model was established. Circulating exosomes were extracted from the plasma of rats and identified. In total, 108 differentially expressed (DE) lncRNAs and 150 DE mRNAs were identified by sequencing. These results indicate that these lncRNAs and mRNAs are substantially involved in chemical cardiotoxicity. Further signaling pathway and functional studies indicated that lncRNAs and mRNAs regulate several biological processes, such as selective mRNA splicing through spliceosomes, participate in sphingolipid metabolic pathways, and play a certain role in the circulatory system. Finally, we obtained 3 upregulated lncRNAs through reverse transcription-quantitative PCR (RT-qPCR) verification and selected target lncRNA-mRNA pairs according to the regulatory relationship of lncRNA/mRNA, some of which were associated with myocardial injury. This study provides valuable insights into the role of lncRNAs as novel biomarkers of chemical-induced cardiotoxicity.


Assuntos
Exossomos , RNA Longo não Codificante , Ratos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Isoproterenol/toxicidade , Redes Reguladoras de Genes , Ratos Sprague-Dawley , Cardiotoxicidade , Exossomos/genética , Exossomos/metabolismo , RNA Mensageiro/metabolismo
11.
Toxicology ; 503: 153752, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369011

RESUMO

The study sought to assess the detrimental effects of isoproterenol (ISO) on major organs and investigate the potential reversibility of these adverse reactions in mice. Male mice were divided into normal control, 0.2 mg/kg.d and 3.0 mg/kg.d ISO groups, and were subcutaneously administered of the respective doses for 14 consecutive days. Subsequently, a recovery period experiment was conducted, replicating the aforementioned procedure, followed by an additional 2-week recovery period for the mice. Following 14 consecutive days of administration, mice treated with ISO exhibited notable cardiac damage manifested by abnormal ECG patterns, dysregulated energy metabolism, elevated cardiac hypertrophy, and increased heart pathological score. Additionally, the administration of ISO resulted in liver and kidney damage, as evidenced by increased pathological score, serum albumin level, and urea level. Lung damage was also observed, indicated by an increase in lung pathological score. Furthermore, the administration of ISO at a dosage of 3.0 mg/kg.d resulted in a decrease in liver mass index, serum iron content, and an increase in lung mass index. After a 2-week recovery period, mice treated with ISO showed abnormalities in ECG patterns and dysregulated myocardial energy metabolism, accompanied by a decrease in serum iron content. Histopathological examinations revealed continued pathological changes in the heart and lung, as well as significant hemosiderin deposition in the spleen. Furthermore, the group treated with ISO at a dosage of 3.0 mg/kg.d showed an increase in serum AST and TP levels. In summary, the study demonstrates that both 0.2 mg/kg.d and 3.0 mg/kg.d doses of ISO can induce damage to the heart, liver, lung, kidney, and spleen, with the higher dose causing more severe injuries. After a 2-week withdrawal period, the liver, kidney, and thymus injuries caused by 0.2 mg/kg ISO shows signs of recovery, while damage to the heart, lung, and spleen persists. The thymus injury mostly recovers, with minimal kidney pathology, but significant damage to the heart, liver, and lung remains even after the withdrawal period for the 3.0 mg/kg ISO dose.


Assuntos
Cardiomiopatias , Miocárdio , Ratos , Masculino , Camundongos , Animais , Isoproterenol/toxicidade , Isoproterenol/metabolismo , Ratos Wistar , Miocárdio/metabolismo , Cardiomiopatias/induzido quimicamente , Metabolismo Energético , Ferro/metabolismo
12.
Iran J Basic Med Sci ; 27(3): 326-334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333757

RESUMO

Objectives: Neurological disorders are the world's most distressing problem. The adverse effects of current medications continue to compel scientists to seek safer, more effective, and economically affordable alternatives. In this vein, we explored the effect of D-Pinitol on isoproterenol-induced neurotoxicity in mice. Materials and Methods: Forty-two mice were randomly distributed into 7 groups each having 6 animals. Group I; received saline. Group II; received isoproterenol (ISO) 15 mg/kg/day, s.c. for 20 days. Group III, IV; received 50 and 100 mg/kg/day/oral of D-Pinitol, respectively along with ISO for 20 days. Group V; received D-Pinitol 100 mg/kg/day/oral for 20 days. Group VI; received propranolol 20 mg/kg/day/oral and ISO for 20 days. Group VII; received propranolol 20 mg/kg/day/oral for 20 days. On the 21st day after behavioral tests, blood was collected and mice were sacrificed for various biochemical, histopathological, and immunohistochemical analyses. Results: Chronic administration of isoproterenol caused neurotoxicity, cognitive dysfunction, and histopathological changes in the brain as evidenced by increase in GFAP, oxidative stress (via SOD, CAT, TBARS, and GSH), neuroinflammation (NF-kB, TNF-α, IL-6, and IL-10), and decrease in AchE and BDNF. Co-administration of D-Pinitol (100 mg/kg) significantly prevented these pathological alterations. The cognitive improvement was also observed through the forced swim test, elevated plus maze test, and rotarod test. Conclusion: Our findings on D-Pinitol thus clearly established its neuroprotective role in ISO-induced neurodegeneration in Swiss albino mice.

13.
Lab Anim Res ; 40(1): 3, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331877

RESUMO

BACKGROUND: High blood glucose levels in diabetes lead to vascular inflammation which accelerates atherosclerosis. Herein, Morin was orally administered in male Wistar rats, at the dose of 40 mg/kg for 28 days, and on the 27th and 28th day, ISO was administered to designate groups at the dose of 85 mg/kg s.c., to induce myocardial infarction. RESULTS: Free radical generation, including ROS, in diabetes following ISO administration, leads to the activation of both intrinsic and extrinsic pathways of apoptosis. Morin significantly (p ≤ 0.05) reduced oxidative stress (GSH, MDA, SOD), cardiac injury markers (CK-MB, LDH), inflammation (TNF, IL-6), and apoptosis (Bax, BCl2, Caspase-3). In addition, it also reduced insulin and blood glucose levels. Akt/eNOS, Nrf2/HO-1, MAPK signaling pathways, and Insulin signal transduction pathways were positively modulated by morin pre-treatment. CONCLUSIONS: Morin attenuated oxidative stress and inflammation and also modified the activity of various molecular pathways to mitigate cardiomyocyte damage during ISO-induced MI in diabetic rats.

14.
Heart Rhythm ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38296010

RESUMO

BACKGROUND: Targeting non-pulmonary vein triggers (NPVTs) after pulmonary vein isolation may reduce atrial fibrillation (AF) recurrence. Isoproterenol infusion and cardioversion of spontaneous or induced AF can provoke NPVTs but typically require vasopressor support and increased procedural time. OBJECTIVE: The purpose of this study was to identify risk factors for the presence of NPVTs and create a risk score to identify higher-risk subgroups. METHODS: Using the AF ablation registry at the Hospital of the University of Pennsylvania, we included consecutive patients who underwent AF ablation between January 2021 and December 2022. We excluded patients who did not receive NPVT provocation testing after failing to demonstrate spontaneous NPVTs. NPVTs were defined as non-pulmonary vein ectopic beats triggering AF or focal atrial tachycardia. We used risk factors associated with NPVTs with P <.1 in multivariable logistic regression model to create a risk score in a randomly split derivation set (80%) and tested its predictive accuracy in the validation set (20%). RESULTS: In 1530 AF ablations included, NPVTs were observed in 235 (15.4%). In the derivation set, female sex (odds ratio [OR] 1.40; 95% confidence interval [CI] 0.96-2.03; P = .080), sinus node dysfunction (OR 1.67; 95% CI 0.98-2.87; P = .060), previous AF ablation (OR 2.50; 95% CI 1.70-3.65; P <.001), and left atrial scar (OR 2.90; 95% CI 1.94-4.36; P <.001) were risk factors associated with NPVTs. The risk score created from these risk factors (PRE2SSS2 score; [PRE]vious ablation: 2 points, female [S]ex: 1 point, [S]inus node dysfunction: 1 point, left atrial [S]car: 2 points) had good predictive accuracy in the validation cohort (area under the receiver operating characteristic curve 0.728; 95% CI 0.648-0.807). CONCLUSION: A risk score incorporating predictors for NPVTs may allow provocation of triggers to be performed in patients with greatest expected yield.

15.
Eur J Pharmacol ; 965: 176327, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224847

RESUMO

AIMS: To investigate the cardioprotective mechanism of exercise or exercise combined with inducible costimulatory molecules (ICOS) monoclonal antibody (mAb) therapy against isoproterenol (ISO)-induced cardiac remodeling. MAIN METHODS: Totally 24 male C57BL/6J mice were randomly divided into four groups: the control group (normal saline treatment), ISO group (subcutaneous injection of isoproterenol, 10 mg/kg/day, once daily for 5 consecutive days), the exercise with subcutaneous ISO injection group (EPI), and the exercise with injected with ISO and ICOS mAb group (EPII). The mice in EPI and EPII group were trained on a small animal treadmill for 4 weeks (13 m/min, 0% grade, 60min/day). KEY FINDINGS: Exercise significantly attenuated CD45+, Mac-2 inflammatory cell infiltration, cardiac fibrosis and inhibited the RIPK1/RIPK3/MLKL/CaMKII and cardiomyocyte pyroptosis pathways to counter ISO-induced severe cardiac injury. The administration of the ICOS mAb may inhibit the cardioprotection of exercise against ISO-induced heart damage. Compared to those in EPI, our data showed that the increasing levels of myocardial fibrosis, the leukocyte infiltration of cardiac tissue and proteins expression of cardiac myocyte necrosis and pyroptosis signaling pathways in the EPII group. SIGNIFICANCE: Our results demonstrated that exercise decreased leukocyte infiltration in heart, inhibited the cardiomyocyte pyroptosis and necroptosis signaling pathways, and attenuated inflammatory responses to alleviate ISO-induced cardiac fibrosis. However, the antifibrotic effects of combined treatment with exercise and ICOS mAb intervention did not exhibit synergistic enhancement.


Assuntos
Cardiomiopatias , Miocárdio , Masculino , Camundongos , Animais , Isoproterenol/farmacologia , Miocárdio/metabolismo , Camundongos Endogâmicos C57BL , Cardiomiopatias/metabolismo , Miócitos Cardíacos , Fatores de Transcrição/metabolismo , Fibrose
16.
Scand Cardiovasc J ; 58(1): 2295785, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38164796

RESUMO

Objective. Myocardial fibrosis (MF) is a common manifestation of end-stage cardiovascular diseases. Triptolide (TP) provides protection against cardiovascular diseases. This study was to explore the functional mechanism of TP in MF rats via the Wnt/ß-catenin pathway. Methods. The MF rat model was established via subcutaneous injection of isoproterenol (ISO) and treated with low/medium/high doses of TP (L-TP/M-TP/H-TP) or Wnt agonist BML-284. Cardiac function was examined by echocardiography. Pathological changes of myocardial tissues were observed by HE and Masson staining. Col-I/Col-III/Vimentin/α-SMA levels were detected by immunohistochemistry, RT-qPCR, and Western blot. Collagen volume fraction content was measured. Expression levels of the Wnt/ß-catenin pathway-related proteins (ß-catenin/c-myc/Cyclin D1) were detected by Western blot. Rat cardiac fibroblasts were utilized for in vitro validation experiments. Results. MF rats had enlarged left ventricle, decreased systolic and diastolic function and cardiac dysfunction, elevated collagen fiber distribution, collagen volume fraction and hydroxyproline content. Levels of Col-I/Col-III/Vimentin/α-SMA, and protein levels of ß-catenin/c-myc/Cyclin D1 were increased in MF rats. The Wnt/ß-catenin pathway was activated in the myocardial tissues of MF rats. TP treatment alleviated impairments of cardiac function and myocardial tissuepathological injury, decreased collagen fibers, collagen volume fraction, Col-I, Col-III, α-SMA and Vimentin levels, HYP content, inhibited Wnt/ß-catenin pathway, with H-TP showing the most significant effects. Wnt agonist BML-284 antagonized the inhibitive effect of TP on MF. TP inhibited the Wnt/ß-catenin pathway to repress the proliferation and differentiation of mouse cardiac fibroblasts in vitro. Conclusions. TP was found to ameliorate ISO-induced MF in rats by inhibiting the Wnt/ß-catenin pathway.


Assuntos
Cardiomiopatias , Doenças Cardiovasculares , Camundongos , Ratos , Animais , Via de Sinalização Wnt , beta Catenina/metabolismo , beta Catenina/farmacologia , Ciclina D1/metabolismo , Ciclina D1/farmacologia , Vimentina/metabolismo , Vimentina/farmacologia , Ratos Sprague-Dawley , Fibrose , Colágeno/farmacologia
17.
Saudi Pharm J ; 32(1): 101907, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178854

RESUMO

Background and Objective: Isoproterenol (ISO) is a non-selective ß-adrenergic receptor agonist. It can be used to treat bradycardia and cardiogenic shock. Despite its usefulness, the overstimulation of ß-receptors by ISO can cause "cardiorenal syndrome," a term used to describe heart and kidney damage. Resveratrol (RES), a natural polyphenol, has marked anti-inflammatory and antioxidant activities. The present work was designed to study the protective efficacy of liposomal resveratrol (L-RES) against ISO-induced kidney injury. Materials and Methods: The kidney injury was induced in rats by administering ISO (50 mg/kg, s.c.) twice a week for 2 weeks. RES and L-RES were administered at a dose (20 mg/kg/ day, p.o.) along with ISO for 2 weeks. Inflammatory and apoptotic biomarkers were analyzed, which were validated using histochemical analysis. Results: ISO caused renal dysfunction, which manifested as elevated urea, creatinine and uric acid, besides cystatin c and MAPK protein overexpression. In addition, ISO induced gene expression of Fas and lipocalin-2 and provoked genomic DNA fragmentation in renal tissues as compared with the control group. Histological examination confirmed morphological alterations of the kidney tissues obtained from the ISO group. Concurrent treatment of either RES or L-RES with ISO significantly ameliorated kidney damage as demonstrated by the improvement of all measured parameters with the best results for L-RES. The histopathological findings were correlated with the above biochemical parameters. Conclusion: L-RES could be a promising approach for the prevention of kidney injury induced by ISO, most likely via the downregulation of MAPK, cystatin c, Fas, and lipocalin-2.

18.
J Cardiol Cases ; 29(1): 27-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188316

RESUMO

Neurogenic orthostatic hypotension (OH) causes severe orthostatic intolerance. We evaluated hemodynamic parameters in a patient with pure autonomic failure (PAF) using various unique approaches. A 60-year-old woman had worsening light-headedness, fatigue, and severe OH without compensatory tachycardia. PAF was diagnosed based on negative neurological findings, testing, and imaging results. The active standing test did not increase the heart rate (HR), and it decreased cardiac output, indicating impaired sympathetic control of cardiovascular activity. HR did not change during the supine bicycle exercise stress test, whereas blood pressure decreased. The patient had an accentuated reaction to isoproterenol but did not respond to atropine sulfate. Isoproterenol 0.01 µg/kg/min caused a 153 % increase in HR that required more than 30 min to return to its original value, suggesting hypersensitivity to catecholamines and decreased parasympathetic activity. As for why atropine sulfate (0.04 mg/kg) did not increase HR, we assumed that parasympathetic activity was already suppressed or the sympathetic effects were not predominant. Intravenous atropine sulfate may be useful in diagnosing PAF, which generally lacks specific neurological physical findings. A proper understanding of the hemodynamics involved in the management of PAF-associated OH is crucial. Learning objective: The autonomic control of cardiovascular function is impaired in pure autonomic failure, and neurogenic orthostatic hypotension can be diagnosed by evaluating changes in heart rate. Treatment should be based on the hemodynamic characteristics using non-invasive cardiac output monitoring, pharmacological approaches, and supine bicycle exercise stress tests.

19.
Acta Pharmacol Sin ; 45(3): 531-544, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919475

RESUMO

Cardiac inflammation contributes to heart failure (HF) induced by isoproterenol (ISO) through activating ß-adrenergic receptors (ß-AR). Recent evidence shows that myeloid differentiation factor 2 (MD2), a key protein in endotoxin-induced inflammation, mediates inflammatory heart diseases. In this study, we investigated the role of MD2 in ISO-ß-AR-induced heart injuries and HF. Mice were infused with ISO (30 mg·kg-1·d-1) via osmotic mini-pumps for 2 weeks. We showed that MD2 in cardiomyocytes and cardiac macrophages was significantly increased and activated in the heart tissues of ISO-challenged mice. Either MD2 knockout or administration of MD2 inhibitor L6H21 (10 mg/kg every 2 days, i.g.) could prevent mouse hearts from ISO-induced inflammation, remodelling and dysfunction. Bone marrow transplantation study revealed that both cardiomyocyte MD2 and bone marrow-derived macrophage MD2 contributed to ISO-induced cardiac inflammation and injuries. In ISO-treated H9c2 cardiomyocyte-like cells, neonatal rat primary cardiomyocytes and primary mouse peritoneal macrophages, MD2 knockout or pre-treatment with L6H21 (10 µM) alleviated ISO-induced inflammatory responses, and the conditioned medium from ISO-challenged macrophages promoted the hypertrophy and fibrosis in cardiomyocytes and fibroblasts. We demonstrated that ISO induced MD2 activation in cardiomyocytes via ß1-AR-cAMP-PKA-ROS signalling axis, and induced inflammatory responses in macrophages via ß2-AR-cAMP-PKA-ROS axis. This study identifies MD2 as a key inflammatory mediator and a promising therapeutic target for ISO-induced heart failure.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Ratos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Isoproterenol/toxicidade , Receptores Adrenérgicos beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos/metabolismo
20.
Fitoterapia ; 172: 105715, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907131

RESUMO

Brassica oleracea L. (BO) is an important vegetable with proven health benefits. This study aimed to elucidate the constituents of BO leaf extract (BOE) and evaluate its effect on myocardial injury. For this purpose, the constituents of BOE were identified using ultra-high performance liquid chromatography with quadrupole time-of- flight mass spectrometry, and 26 compounds were determined, including glucosinolates, sulfur compounds, alkaloids, phenolic acids, flavones, and two other kinds of compounds. The effects of BOE on myocardial cells were evaluated using isoproterenol (ISO)-treated H9C2 cells and Wistar rats, and the results revealed that BOE could inhibit cardiomyocyte hypertrophy and reduce the levels of B-type natriuretic peptide, nitric oxide, reactive oxygen species, lactic acid, and pyruvic acid. Meanwhile, BOE could increase the levels of mitochondrial membrane potential. Moreover, BOE could reduce the levels of apoptosis- and glycolysis-related proteins. Taken together, our data demonstrated that BOE treatment could alleviate ISO-induced myocardial cell injury by downregulating apoptosis and glycolysis signals.


Assuntos
Brassica , Extratos Vegetais , Ratos , Animais , Isoproterenol , Ratos Wistar , Estrutura Molecular , Extratos Vegetais/farmacologia , Brassica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...